Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.745
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38473910

RESUMEN

Caffeine is one of the most widely consumed psychoactive drugs in the world. It easily crosses the blood-brain barrier, and caffeine-interacting adenosine and ryanodine receptors are distributed in various areas of the brain, including the hypothalamus and pituitary. Caffeine intake may have an impact on reproductive and immune function. Therefore, in the present study performed on the ewe model, we decided to investigate the effect of peripheral administration of caffeine (30 mg/kg) on the secretory activity of the hypothalamic-pituitary unit which regulates the reproductive function in females during both a physiological state and an immune/inflammatory challenge induced by lipopolysaccharide (LPS; 400 ng/kg) injection. It was found that caffeine stimulated (p < 0.01) the biosynthesis of gonadotropin-releasing hormone (GnRH) in the hypothalamus of ewe under both physiological and inflammatory conditions. Caffeine also increased (p < 0.05) luteinizing hormone (LH) secretion in ewes in a physiological state; however, a single administration of caffeine failed to completely release the LH secretion from the inhibitory influence of inflammation. This could result from the decreased expression of GnRHR in the pituitary and it may also be associated with the changes in the concentration of neurotransmitters in the median eminence (ME) where GnRH neuron terminals are located. Caffeine and LPS increased (p < 0.05) dopamine in the ME which may explain the inhibition of GnRH release. Caffeine treatment also increased (p < 0.01) cortisol release, and this stimulatory effect was particularly evident in sheep under immunological stress. Our studies suggest that caffeine affects the secretory activity of the hypothalamic-pituitary unit, although its effect appears to be partially dependent on the animal's immune status.


Asunto(s)
Cafeína , Hormona Liberadora de Gonadotropina , Femenino , Ovinos , Animales , Hormona Liberadora de Gonadotropina/metabolismo , Cafeína/farmacología , Hormona Luteinizante/metabolismo , Lipopolisacáridos/farmacología , Hipotálamo/metabolismo
2.
Birth Defects Res ; 116(2): e2315, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38348645

RESUMEN

BACKGROUND AND AIM: Chemotherapy, particularly with methotrexate (MTX), often elicits testicular toxicity, leading to impaired spermatogenesis and hormone imbalances. This study aimed to investigate the potential protective effects of selenium (Se) against MTX-induced testicular injury. MATERIALS AND METHODS: Male mice were divided into control, MTX, Se, and MTX + Se groups. Histopathological examination involved the preparation of testicular tissue sections using the Johnsen's tubular biopsy score (JTBS) for spermatogenesis evaluation. Biochemical tests included the assessment of testosterone, malondialdehyde (MDA), luteinizing hormone (LH), and follicle-stimulating hormone (FSH) levels. Real-time quantitative polymerase chain reaction (RT-qPCR) was employed to analyze the expression of caspase 3 (casp3), tumor protein 53 (p53), B-cell lymphoma 2 (Bcl2), and Bcl2-associated X protein (Bax) genes. Statistical analysis was performed using ANOVA and Tukey's tests (p < .05). RESULTS: Histopathological analysis revealed significant testicular damage in the MTX group, with decreased spermatogenesis and Leydig cell count, while Se administration mitigated these effects, preserving the structural integrity of the reproductive epithelium. Biochemical analysis demonstrated that MTX led to elevated malondialdehyde (MDA) levels and reduced testosterone, LH, and FSH levels, suggesting oxidative stress and Leydig cell dysfunction. Gene expression analysis indicated that MTX upregulated proapoptotic genes (casp3, p53, and bax) while downregulating the antiapoptotic Bcl2 gene. In contrast, Se treatment reversed these trends, highlighting its potential antiapoptotic properties. CONCLUSION: Our findings underscore the potential of Se as a therapeutic agent to mitigate the reproductive toxicity associated with MTX-induced testicular injury. Se exerts protective effects by regulating oxidative stress, preserving hormone balance, and modulating apoptotic pathways. These results suggest that Se supplementation could be a promising strategy to alleviate chemotherapy-induced testicular damage and preserve male fertility.


Asunto(s)
Metotrexato , Selenio , Masculino , Ratones , Animales , Metotrexato/efectos adversos , Selenio/farmacología , Caspasa 3/metabolismo , Proteína X Asociada a bcl-2/metabolismo , Proteína p53 Supresora de Tumor , Testosterona , Hormona Luteinizante/metabolismo , Malondialdehído/metabolismo , Hormona Folículo Estimulante
3.
Neurobiol Aging ; 135: 60-69, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38185053

RESUMEN

Alzheimer's disease (AD) is more prevalent in women than men, supposing due to the decline of estrogens in menopause, accompanied by increased gonadotropins such as luteinizing hormone (LH). We and others found that the transcription factor early growth response-1 (EGR1) regulates cholinergic function including the expression of acetylcholinesterase (AChE) and plays a significant role in cognitive decline of AD. Here we investigated in APP/PS1 mice by ovariectomy (OVX) and estradiol (E2) supplementation or inhibition of LH the effect on hippocampus-related cognition and related molecular changes. We found that OVX-associated cognitive impairment was accompanied by increased dorsal hippocampal EGR1 expression, which was rescued by downregulating peripheral LH rather than by supplementing E2. We also found in postmortem AD brains a higher expression of pituitary LH-mRNA and higher EGR1 expression in the posterior hippocampus. Both, in human and mice, there was a significant positive correlation between respectively posterior/dorsal hippocampal EGR1 and peripheral LH expression. We conclude that peripheral increased LH and increased posterior hippocampal EGR1 plays a significant role in AD pathology.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Ratones , Femenino , Animales , Humanos , Hormona Luteinizante/metabolismo , Regulación hacia Abajo , Acetilcolinesterasa , Disfunción Cognitiva/genética , Disfunción Cognitiva/metabolismo , Enfermedad de Alzheimer/metabolismo , Cognición , Ovariectomía , Ratones Transgénicos , Modelos Animales de Enfermedad , Hipocampo/metabolismo
4.
Behav Brain Res ; 461: 114783, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38029845

RESUMEN

In recent years, central precocious puberty (CPP) in children is becoming more common, which seriously affects their physical and psychological health and requires finding a safe and effective treatment method. The aim of this study was to investigate the therapeutic effect of melatonin on CPP. A CPP model was established by subcutaneous injection of 300 micrograms of danazol into 5-day-old female mice, followed by treatment with melatonin and leuprolide. The vaginal opening was checked daily. Mice were weighed, gonads were weighed, gonadal index was calculated, and gonadal development was observed by hematoxylin and eosin (HE) staining. Serum follicle stimulating hormone (FSH), luteinizing hormone (LH) and estradiol (E2) levels were measured by ELISA. By using RT-PCR and Western blotting, the mRNA and protein expression of the hypothalamus Kiss-1, Kiss-1 receptor (Kiss1R), gonadotropin-releasing hormone (GnRH), and pituitary GnRH receptor (GnRHR) were identified. The results showed that melatonin delayed vaginal opening time and reduced body weight, gonadal weight and indices in female CPP mice. Melatonin treatment prevents uterine wall thickening and ovarian luteinization in female CPP mice. Melatonin treatment reduces serum concentrations of FSH, LH, and E2 in female CPP mice. Melatonin suppressed the expressions of Kiss-1, Kiss1R and GnRH in the hypothalamus, and the expression of GnRHR in the pituitary of the female CPP mice. Our results suggest that melatonin can inhibit the hypothalamic-pituitary-gonadal (HPG) axis by down-regulating the Kiss-1/Kiss1R system, thereby treating CPP in female mice.


Asunto(s)
Melatonina , Pubertad Precoz , Humanos , Niño , Femenino , Ratones , Animales , Pubertad Precoz/tratamiento farmacológico , Pubertad Precoz/metabolismo , Melatonina/farmacología , Kisspeptinas/metabolismo , Hormona Liberadora de Gonadotropina/genética , Hormona Liberadora de Gonadotropina/metabolismo , Hormona Liberadora de Gonadotropina/farmacología , Hormona Luteinizante/metabolismo , Hormona Luteinizante/uso terapéutico , Hormona Folículo Estimulante/uso terapéutico , Hipotálamo/metabolismo
5.
Biol Reprod ; 110(2): 261-274, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-37870496

RESUMEN

In gilts, puberty is marked by standing estrus in the presence of a boar. Delayed puberty (DP; failure to display pubertal estrus) is a major reason for gilt removal. To investigate the physiological determinants underlying DP in gilts, transcriptomic data from tissues relevant to estrus and puberty, such as mediobasal hypothalamus, anterior pituitary gland, ovarian cortex, olfactory bulb, amygdala, and hippocampus, were obtained from age-matched DP (n = 8) and cyclic control gilts at follicular phase (n = 8) and luteal phase (n = 8) of the estrous cycle. A gene expression module analysis via three-way gene × individual × tissue clustering using tensor decomposition identified pituitary and ovary gene modules contributing to regulation of pubertal development. Analysis of gene expression in the hypothalamic-pituitary-ovary axis identified reduced expression of hypothalamic genes critical for stimulating gonadotropin secretion (KISS1 and TAC3) and reduced expression of LHB in the anterior pituitary of DP gilts compared with their cyclic counterparts. Consequently, luteinizing hormone-induced genes in the ovary important for folliculogenesis (OXTR, RUNX2, and PTX3) were less expressed in DP gilts. Other intrafollicular genes (AHR, PTGS2, PTGFR, and IGFBP7) and genes in the steroidogenesis pathways (STAR and CYP11A1) necessary to complete the ovulatory cascade were also less expressed in DP gilts. This is the first clustering of multi-tissue expression data from DP and cyclic gilts to identify genes differentially expressed in gilts of similar ages but at different levels of sexual development. A critical lack of gonadotropin support and reduced ovarian responsiveness underlie DP in gilts.


Asunto(s)
Maduración Sexual , Transcriptoma , Porcinos , Femenino , Animales , Masculino , Maduración Sexual/genética , Sus scrofa/metabolismo , Hormona Luteinizante/metabolismo , Hipotálamo/metabolismo
6.
Reproduction ; 165(4): 395-405, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36757313

RESUMEN

In brief: Seminal nerve growth factor induces ovulation in camelids by influencing the secretion of gonadotrophin-releasing hormone (GnRH) into the portal vessels of the pituitary gland. We show that the nerve growth factor-induced release of GnRH is not mediated directly through interaction with hypothalamic neurons. Abstract: Ovulation in camelids is triggered by seminal nerve growth factor (NGF). The mechanism of action of NGF appears to occur via the central nervous system. In this study, we tested the hypothesis that NGF acts in the hypothalamus to induce GnRH release. To determine if NGF-induced ovulation is associated with a rise in NGF concentrations in the cerebrospinal fluid (CSF), llamas were i) mated with an urethrostomized male, ii) mated with intact male, or given intrauterine iii) seminal plasma or i.v.) saline (Experiment 1). To characterize the luteinizing hormone (LH) response after central vs peripheral administration, llamas were treated with saline (negative control) or NGF either by i.v. or intracerebroventricular (ICV) administration (Experiment 2). To determine the role of kisspeptin, the effect of ICV infusion of a kisspeptin receptor antagonist on NGF-induced LH secretion and ovulation was tested in llamas (Experiment 3). In Experiment 1, a surge in circulating concentrations of LH was detected only in llamas mated with an intact male and those given intrauterine seminal plasma, but no changes in CSF concentrations of NGF were detected. In Experiment 2, peripheral administration (i.v.) of NGF induced an LH surge and ovulation, whereas no response was detected after central (ICV) administration. In Experiment 3, the kisspeptin receptor antagonist had no effect on the LH response to NGF. In conclusion, results did not support the hypothesis that NGF-induced ovulation is mediated via a trans-synaptic pathway within the hypothalamus, but rather through a releasing effect on tanycytes at the median eminence.


Asunto(s)
Camélidos del Nuevo Mundo , Factor de Crecimiento Nervioso , Femenino , Animales , Masculino , Factor de Crecimiento Nervioso/farmacología , Progesterona , Camélidos del Nuevo Mundo/metabolismo , Kisspeptinas/farmacología , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Hormona Liberadora de Gonadotropina/metabolismo , Hipotálamo/metabolismo
7.
Peptides ; 162: 170958, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36682622

RESUMEN

Inflammatory diseases attenuate reproductive functions in humans and domestic animals. Lipopolysaccharide (LPS), an endotoxin released by bacteria, is known to disrupt female reproductive functions in various inflammatory diseases. LPS administration has been used to elucidate the impact of pathophysiological activation of the immune system on reproduction. Hypothalamic kisspeptin neurons are the master regulators of mammalian reproduction, mediating direct stimulation of hypothalamic gonadotropin-releasing hormone (GnRH) release and consequent release of gonadotropins, such as luteinizing hormone (LH) and follicle-stimulating hormone from the pituitary. The discovery of kisspeptin neurons in the mammalian hypothalamus has drastically advanced our understanding of how inflammatory stress causes reproductive dysfunction in both humans and domestic animals. Inflammation-induced ovarian dysfunction could be caused, at least partly, by aberrant GnRH and LH secretion, which is regulated by kisspeptin signaling. In this review, we focus on the effects of LPS on hypothalamic kisspeptin neurons to outline the impact of inflammatory stress on neuroendocrine regulation of mammalian reproductive systems. First, we summarize the attenuation of female reproduction by LPS during inflammation and the effects of LPS on ovarian and pituitary function. Second, we outline the inhibitory effects of LPS on pulsatile- and surge-mode GnRH/LH release. Third, we discuss the LPS-responsive hypothalamic-pituitary-adrenal axis and hypothalamic neural systems in terms of the cytokine-mediated pathway and the possible direct action of LPS via its hypothalamic receptors. This article describes the impact of LPS on hypothalamic kisspeptin neurons and the possible mechanisms underlying LPS-mediated disruption of LH pulses/surge via kisspeptin neurons.


Asunto(s)
Animales Domésticos , Infertilidad , Humanos , Animales , Femenino , Animales Domésticos/metabolismo , Kisspeptinas/metabolismo , Sistema Hipotálamo-Hipofisario/metabolismo , Lipopolisacáridos , Sistema Hipófiso-Suprarrenal/metabolismo , Hipotálamo/metabolismo , Hormona Liberadora de Gonadotropina , Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Infertilidad/metabolismo , Mamíferos
8.
Poult Sci ; 102(1): 102261, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36410067

RESUMEN

Egg production levels in late laying hens are negatively correlated with increasing age. Decreased liver and ovarian function in aging laying hens is accompanied by decreased antioxidant capacity, reproductive hormone levels, and follicular development, resulting in decreased synthesis of yolk precursors. The golden needle mushroom (Flammulina velutipes) has been reported to exhibit anti-inflammatory, antioxidant, and hypolipidemic properties. We aimed to reveal the therapeutic effects of F. velutipes stem (FVS) on liver-blood-ovary axis and investigate the underlying mechanisms. A total of 360 sixty-seven-wk-old laying hens were randomized into 4 treatment groups: 1) basal maize-soybean meal diet (CON); 2) basal maize + 20 g/kg FVS (2% FVS); 3) basal maize + 40 g/kg FVS (4% FVS); and 4) basal maize + 60 g/kg FVS (6% FVS). FVS groups demonstrated significantly increased egg production and ovarian development compared with the CON group. The addition of FVS increased the levels of antioxidant enzymes (GSH-Px, T-SOD, and T-AOC) in the liver, serum, and ovaries and decreased malondialdehyde levels by regulating the expression of proteins related to the Keap1-Nrf2/ARE signaling pathway. Additionally, FVS significantly decreased ovarian apoptosis by regulating Bax, Bcl-2, and caspase3 mRNA and protein expression levels. FVS significantly increased the expression levels of estradiol, progesterone, luteinizing hormone, and follicle stimulating hormone and their respective receptors. With increased levels of estradiol transported to the liver through the bloodstream, targeted binding to estrogen receptor (ER)-α and ER-ß led to significant increases in ApoVLDL II, ApoB, and VTG II mRNA expression associated with yolk precursor synthesis. FVS decreased the levels of triglyceride and total cholesterol and significantly increased the expression of lipid metabolism, and transport-related mRNAs (FAS, PPAR-a/γ, and MTTP) in the liver. Therefore, the dietary supplementation of FVS can maintain the productive performance of aging laying hens by alleviating the degree of oxidative stress and regulating the transport of functional substances along the liver-blood-ovary axis, thereby improving the synthesis of yolk precursors.


Asunto(s)
Flammulina , Ovario , Femenino , Animales , Ovario/metabolismo , Antioxidantes/metabolismo , Flammulina/metabolismo , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Pollos/fisiología , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo , Dieta/veterinaria , Hígado/metabolismo , Envejecimiento , Hormona Luteinizante/metabolismo , Estradiol , Alimentación Animal/análisis , Suplementos Dietéticos
9.
Nutrients ; 14(22)2022 Nov 10.
Artículo en Inglés | MEDLINE | ID: mdl-36432448

RESUMEN

Late-onset hypogonadism, a male age-related syndrome characterized by a decline in testosterone production in the testes, is commonly treated with testosterone replacement therapy, which has adverse side effects. Therefore, an alternative treatment is highly sought. Supplementation of a high dosage of biotin, a water-soluble vitamin that functions as a coenzyme for carboxylases involved in carbohydrate, lipid, and amino acid metabolism, has been shown to influence testis functions. However, the involvement of biotin in testis steroidogenesis has not been well clarified. In this study, we examined the effect of biotin on testosterone levels in mice and testis-derived cells. In mice, intraperitoneal treatment with biotin (1.5 mg/kg body weight) enhanced testosterone levels in the serum and testes, without elevating serum levels of pituitary luteinizing hormone. To investigate the mechanism in which biotin increased the testosterone level, mice testis-derived I-10 cells were used. The cells treated with biotin increased testosterone production in a dose- and time-dependent manner. Biotin treatment elevated intracellular cyclic adenosine monophosphate levels via adenylate cyclase activation, followed by the activation of protein kinase A and testosterone production. These results suggest that biotin may have the potential to improve age-related male syndromes associated with declining testosterone production.


Asunto(s)
Testículo , Testosterona , Ratones , Masculino , Animales , Biotina/farmacología , Hormona Luteinizante/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo
10.
J Biol Chem ; 298(10): 102477, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36096202

RESUMEN

Ovarian cycle is controlled by circulating levels of the steroid hormone 17-ß-estradiol, which is predominantly synthesized by the granulosa cells (GCs) of ovarian follicles. Our earlier studies showed that unsaturated fatty acids (USFs) downregulate and saturated fatty acids (SFAs) upregulate estradiol production in GCs. However, it was unclear whether pituitary gonadotropins induce accumulation of free fatty acids (FFAs) in the follicular fluid since follicle-stimulating hormone induces and luteinizing hormone inhibits estradiol production in the mammalian ovary. Interestingly, we show here the gas chromatography analysis of follicular fluid revealed no differential accumulation of FFAs between pre- and post-luteinizing hormone surge follicles. We therefore wondered how estradiol production is regulated in the physiological context, as USFs and SFAs are mutually present in the follicular fluid. We thus performed in vitro primary GC cultures with palmitate, palmitoleate, stearate, oleate, linoleate, and alpha-linolenate, representing >80% of the FFA fraction in the follicular fluid, and analyzed 62 different cell culture conditions to understand the regulation of estradiol biosynthesis under diverse FFA combinations. Our analyses showed co-supplementation of SFAs with USFs rescued estradiol production by restoring gonadotropin receptors and aromatase, antagonizing the inhibitory effects of USFs. Furthermore, transcriptome data of oleic acid-treated GCs indicated USFs induce the ERK and Akt signaling pathways. We show SFAs inhibit USF-induced ERK1/2 and Akt activation, wherein ERK1/2 acts as a negative regulator of estradiol synthesis. We propose SFAs are vital components of the follicular fluid, without which gonadotropin signaling and the ovarian cycle would probably be shattered by USFs.


Asunto(s)
Estradiol , Ácidos Grasos no Esterificados , Líquido Folicular , Células de la Granulosa , Animales , Femenino , Estradiol/metabolismo , Ácidos Grasos no Esterificados/química , Ácidos Grasos no Esterificados/metabolismo , Hormona Folículo Estimulante/metabolismo , Líquido Folicular/química , Líquido Folicular/metabolismo , Células de la Granulosa/metabolismo , Hormona Luteinizante/metabolismo , Mamíferos/metabolismo , Progesterona/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología
11.
Front Endocrinol (Lausanne) ; 13: 961748, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35992126

RESUMEN

Wilson's disease (WD) is an autosomal recessive disorder of copper metabolism characterized by liver and central nervous system dysfunction. Considerable evidence suggests that infertility is also very common in male patients with WD, but the exact molecular mechanisms involved remain unknown. In order to further investigate the pathological changes in the hypothalamic-pituitary-testicular (HPT) axis and its mechanisms, mice were divided into the normal control group (NC), WD model TX mice group (WD), dimercaptosuccinic acid-treated TX mice group (DMSA), and pregnant horse serum gonadotropin-treated TX mice group (PMSG). The copper content and morphology of hypothalamus and pituitary tissues, the ultrastructure and apoptosis of hypothalamus neurons and pituitary gonadotropin cells, the serum levels of reproductive hormones, and the pregnancy rate and litter size of the female mice were studied. The expression of apoptosis-related proteins and the phosphorylation of extracellular regulatory protein kinase (ERK) 1/2 in the hypothalamus and pituitary were detected. The results showed that the copper content was significantly increased in the WD group, and the histopathological morphology and ultrastructure of the hypothalamus and pituitary were damaged. The levels of the gonadotropin-releasing hormone, the follicle-stimulating hormone, the luteinizing hormone, and testosterone were significantly decreased. The apoptosis rate in the hypothalamus and pituitary was significantly increased. The expressions of proapoptotic proteins Bax and Caspase-3 were significantly increased, the expression of the anti-apoptotic protein Bcl-2 was significantly decreased, and the phosphorylation level of ERK1/2 was significantly decreased. Fertility is significantly reduced. After DMSA intervention, the hypothalamus tissue copper content decreased, the hypothalamus and pituitary tissue morphology and ultrastructure were improved, cell apoptosis was alleviated, the expression of Bax and Caspase-3 was significantly decreased, the expression of Bcl-2 was significantly increased, and the reproductive hormone level, phosphorylation level, and fertility were increased. Fertility was preserved after treatment with PMSG in male TX mice. These results suggest that copper deposition in WD causes male fertility decline by impairing reproductive neuroendocrine hormone release through inducing apoptosis and inhibiting the ERK signal in the hypothalamic-pituitary region. This study can also provide reference for the damage of copper pollution to the male reproductive system.


Asunto(s)
Cobre , Degeneración Hepatolenticular , Animales , Apoptosis , Caspasa 3/metabolismo , Femenino , Fertilidad , Gonadotropinas Hipofisarias/metabolismo , Degeneración Hepatolenticular/metabolismo , Caballos , Hipotálamo/metabolismo , Hormona Luteinizante/metabolismo , Masculino , Ratones , Embarazo , Proteínas Quinasas , Succímero/metabolismo , Proteína X Asociada a bcl-2/metabolismo
12.
Endocrinology ; 163(8)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35789268

RESUMEN

Luteinizing hormone (LH) secretion during the ovarian cycle is governed by fluctuations in circulating estradiol (E2) that oppositely regulate kisspeptin neurons in the anteroventral periventricular nucleus (AVPV) and arcuate nucleus (ARC) of the hypothalamus. However, how these effects are orchestrated to achieve fertility is unknown. Here, we have tested the hypothesis that AVPV and ARC neurons have different sensitivities to E2 to coordinate changes in LH secretion. Cycling and ovariectomized rats with low and high E2 levels were used. As an index of E2 responsiveness, progesterone receptor (PR) was expressed only in the AVPV of rats with high E2, showing the preovulatory LH surge. On the other hand, kisspeptin neurons in the ARC responded to low E2 levels sufficient to suppress LH release. Notably, the Esr1/Esr2 ratio of gene expression was higher in the ARC than AVPV, regardless of E2 levels. Accordingly, the selective pharmacological activation of estrogen receptor α (ERα) required lower doses to induce PR in the ARC. The activation of ERß, in turn, amplified E2-induced PR expression in the AVPV and the LH surge. Thus, ARC and AVPV neurons are differently responsive to E2. Lower E2 levels activate ERα in the ARC, whereas ERß potentiates the E2 positive feedback in the AVPV, which appears related to the differential Esr1/Esr2 ratio in these 2 brain areas. Our findings provide evidence that the distinct expression of ER isoforms in the AVPV and ARC plays a key role in the control of periodic secretion of LH required for fertility in females.


Asunto(s)
Estradiol , Kisspeptinas , Animales , Núcleo Arqueado del Hipotálamo/metabolismo , Estradiol/metabolismo , Estradiol/farmacología , Receptor alfa de Estrógeno/genética , Receptor alfa de Estrógeno/metabolismo , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Isoformas de Proteínas/metabolismo , Ratas , Receptores de Estrógenos/metabolismo
13.
Aging Cell ; 21(8): e13656, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35770332

RESUMEN

Hypothalamic integrity increasingly is being recognized as a marker of healthy longevity in rodent models. Insight into hypothalamic function in humans with exceptional longevity can be gained via investigation of the hypothalamic-pituitary-testicular (HPT) axis in men with exceptional longevity. This study aimed to characterize the HPT axis function, defined by levels of testosterone (T) and luteinizing hormone (LH), in 84 Ashkenazi Jewish men aged 90-106 years. We found that 94% of men exhibited preserved hypothalamic-pituitary function, as evidenced by either normal testosterone and LH levels (25%) or an appropriate rise in LH in response to aging-related primary testicular dysfunction (69%), a hormone pattern mirroring female menopause. Total T level was not associated with metabolic parameters or survival. These results demonstrate a high prevalence of testicular dysfunction with preserved hypothalamic-pituitary function in men with exceptional longevity. Thus, the role of hypothalamic integrity and HPT axis in healthy aging warrants further investigation.


Asunto(s)
Hipotálamo , Longevidad , Hipófisis , Testículo , Envejecimiento/sangre , Envejecimiento/metabolismo , Hormona Folículo Estimulante/metabolismo , Humanos , Hipotálamo/metabolismo , Longevidad/fisiología , Hormona Luteinizante/sangre , Hormona Luteinizante/metabolismo , Masculino , Hipófisis/metabolismo , Enfermedades Testiculares/sangre , Enfermedades Testiculares/metabolismo , Testículo/metabolismo , Testosterona/sangre , Testosterona/metabolismo
14.
J Anim Sci ; 100(7)2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35772754

RESUMEN

Development of the corpus luteum (CL) requires the growth of a new capillary network from preexisting vasculature, a process known as angiogenesis. Successful building of this capillary network occurs through a sequence of cellular events-differentiation, proliferation, migration, and adhesion-which are regulated by a suite of angiogenic proteins that includes cellular communication network factor 1 (CCN1). We previously reported that the expression of CCN1 was highest in luteal tissue obtained from the early-cycle, 4-d-old bovine CL (i.e., corpus hemorrhagicum) compared to the mid- and late-cycle CL. In the present study, we treated steroidogenic bovine luteal cells from early-cycle CL with luteinizing hormone (LH), but it had no effect on CCN1 expression. Direct stimulation of the canonical LH pathway with forskolin and dibutyryl-cyclic adenosine monophosphate (cAMP), however, inhibited CCN1 mRNA expression. In endothelial cells, stimulation of Ras homolog family member A (RhoA) induces CCN1 expression, whereas RhoA inactivation inhibits it. Yet, it is unknown if regulation of CCN1 in steroidogenic luteal cells works likewise. We hypothesized that a similar mechanism of CCN1 regulation exists in bovine luteal cells and that thrombin, a known RhoA activator, may be a physiologic trigger for this mechanism in the early-cycle CL. To test this hypothesis, ovaries were collected from lactating dairy cows on days 3 or 4 of the estrous cycle, and corpora lutea were dissected and dissociated. Steroidogenic luteal cells were suspended in defined Ham's F12 medium, supplemented with insulin/transferrin/selenium and gentamicin, and seeded into 6-well plates. After 24 h, spent medium was replaced with fresh Ham's F12, and the cells were cultured for 24 to 48 h. Cells were treated for 2 h with defined medium, 10% fetal bovine serum (FBS), thrombin (1, 5, 10 U/mL), or Rho Activator II (0.25, 1, 2 µg/mL). Cells were then lysed for RNA extraction, followed by cDNA generation, and quantitative polymerase chain reaction (qPCR). Thrombin (1, 5, 10 U/mL; n = 3) and Rho Activator II (0.25, 1, 2 µg/mL; n = 6) increased (P < 0.05) CCN1 mRNA expression. In summary, CCN1 in bovine steroidogenic luteal cells was induced by thrombin and appeared to be regulated in a Rho-dependent manner. Future work will elucidate the signaling partners downstream of Rho which leads to CCN1 gene expression.


The corpus luteum (CL) is a transient ovarian endocrine gland that secretes progesterone, the hormone of pregnancy. Development of an optimally functioning CL requires the creation of a dense capillary bed through growth of new blood vessels, which is an intricate process called angiogenesis. A myriad of factors regulates angiogenesis, including the angiogenic inducer protein, cellular communication network factor 1 (CCN1). Although it is highly expressed in the early-cycle bovine CL, the mechanisms of CCN1 regulation have not been fully elucidated. In the present study, we showed that CCN1 expression in steroidogenic luteal cells from the early-cycle bovine CL was induced by Ras homolog family member A (RhoA) and by thrombin, but not by luteinizing hormone (LH). To the best of our knowledge, the involvement of thrombin and its signaling partner, RhoA, in regulating CCN1 in bovine steroidogenic luteal cells has not been previously reported. These findings will inform our future work to determine how RhoA activation by thrombin leads to increased expression of CCN1.


Asunto(s)
Células Lúteas , Animales , Bovinos , Cuerpo Lúteo , Células Endoteliales/metabolismo , Femenino , Lactancia , Células Lúteas/metabolismo , Hormona Luteinizante/metabolismo , Progesterona/metabolismo , ARN Mensajero/metabolismo , Trombina/metabolismo , Trombina/farmacología , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/farmacología
15.
Pharm Biol ; 60(1): 282-293, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35138992

RESUMEN

CONTEXT: Cordia dichotoma Forst. (Boraginaceae) has potent pharmacological impact. Meanwhile, its effect on fertility is unclear. OBJECTIVE: This study investigates the effect of Cordia fresh fruits hydroethanolic extract on fertility. MATERIALS AND METHODS: 120 Wistar albino male rats were divided into four groups (n = 30). The first group was negative control, and the second, third, and fourth groups received 125, 250, and 500 mg extract/kg bodyweight for 56 days. After 56 days, Cordia force-feeding stopped, and all groups were kept under laboratory conditions for another month to study the recovering effect. RESULTS: After day 56, extract at 500 mg/kg significantly reduced sperm total count, motility%, and alive%, to 47.60 ± 2.27 × 106 sperm/mL, 43.33% ± 1.49, and 63.67% ± 1.19, respectively, abnormalities% increased considerably (26.67% ± 0.54), compared to the negative control. Also, significant depletion on follicle-stimulating hormone (2.66 ± 0.21 mIU/L), luteinizing hormone (1.07 ± 0.06 mIU/L), and testosterone (2.69 ± 0.13 nmol/L) level was recorded, compared to the negative control. Cordia negative effect showed on histopathological studies of testes, prostate, and seminal vesicles. Fortunately, these adverse effects of Cordia recovered remarkably after stopping administration for one month. CONCLUSIONS: Cordia antifertility effect may be due to its hypocholesterolemic effect, where cholesterol, the steroid cycle precursor, was significantly reduced. This study can be incorporated in clinical research after being repeated on another small experimental animal, their offspring, and one large experimental animal, then going to a clinical study that we plan to do in the future.


Asunto(s)
Cordia/química , Extractos Vegetales/toxicidad , Espermatozoides/efectos de los fármacos , Testículo/efectos de los fármacos , Animales , Anticolesterolemiantes/administración & dosificación , Anticolesterolemiantes/aislamiento & purificación , Anticolesterolemiantes/toxicidad , Relación Dosis-Respuesta a Droga , Hormona Folículo Estimulante/metabolismo , Frutas , Hormona Luteinizante/metabolismo , Masculino , Extractos Vegetales/administración & dosificación , Ratas , Ratas Wistar , Testículo/patología , Testosterona/metabolismo
16.
J Ethnopharmacol ; 289: 115062, 2022 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-35114339

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ferula hermonis is a small shrub renowned for its aphrodisiac abilities. Middle East herbalists have utilized Ferula hermonis seed and root as an aphrodisiac folk medicine to treat women's frigidity and male erectile and sexual dysfunction. AIM OF THE STUDY: Assessment of follicle-stimulating hormone-like (FSH), luteinizing hormone-like (LH), and estrogenic activities of the methanolic extract (ME) of the roots of Ferula hermonis on female reproductive function. MATERIALS AND METHODS: The methanolic extract was prepared from the root of F. hermonis and studied at dose level 6 mg/kg in immature female rats for FSH-like, LH-like, and estrogenic activities. These activities were determined by analyzing gross anatomical features, relative organ weight, and serum level of FSH, LH, progesterone and estrogen hormones, and histopathological characteristics. Quantification of the main phytoestrogenic component ferutinin carried out by HPLC. In addition, molecular docking for the binding affinity of ferutinin inside active sites of both estrogen receptor alpha (ERα) and FSH receptor (FSHR) was performed to predict the potential role of ferutinin in regulating the female reproductive process. RESULTS: Ferula hermonis (ME) showed potent FSH-like, LH-like activities and moderate estrogenic effect at the dose of 6 mg/kg. The content of ferutinin in F. hermonis was estimated to be 92 ± 1.33 mg/g of the methanolic extract. Molecular docking of ferutinin with ERα and FSHR displayed strong interaction with target proteins. CONCLUSIONS: Based on results, it can be concluded that Ferula hermonis can be considered as a suitable female fertility improving agent.


Asunto(s)
Benzoatos/farmacología , Cicloheptanos/farmacología , Fármacos para la Fertilidad/farmacología , Ferula/química , Extractos Vegetales/farmacología , Sesquiterpenos/farmacología , Animales , Benzoatos/aislamiento & purificación , Compuestos Bicíclicos con Puentes/aislamiento & purificación , Compuestos Bicíclicos con Puentes/farmacología , Cromatografía Líquida de Alta Presión , Cicloheptanos/aislamiento & purificación , Femenino , Fertilidad , Fármacos para la Fertilidad/aislamiento & purificación , Hormona Folículo Estimulante/metabolismo , Hormona Luteinizante/metabolismo , Simulación del Acoplamiento Molecular , Ratas , Sesquiterpenos/aislamiento & purificación
17.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-35163554

RESUMEN

Lactation is a physiological state of hyperprolactinemia and associated amenorrhea. Despite the fact that exact mechanisms standing behind the hypothalamus-pituitary-ovarian axis during lactation are still not clear, a general overview of events leading to amenorrhea may be suggested. Suckling remains the most important stimulus maintaining suppressive effect on ovaries after pregnancy. Breastfeeding is accompanied by high levels of prolactin, which remain higher than normal until the frequency and duration of daily suckling decreases and allows normal menstrual function resumption. Hyperprolactinemia induces the suppression of hypothalamic Kiss1 neurons that directly control the pulsatile release of GnRH. Disruption in the pulsatile manner of GnRH secretion results in a strongly decreased frequency of corresponding LH pulses. Inadequate LH secretion and lack of pre-ovulatory surge inhibit the progression of the follicular phase of a menstrual cycle and result in anovulation and amenorrhea. The main consequences of lactational amenorrhea are connected with fertility issues and increased bone turnover. Provided the fulfillment of all the established conditions of its use, the lactational amenorrhea method (LAM) efficiently protects against pregnancy. Because of its accessibility and lack of additional associated costs, LAM might be especially beneficial in low-income, developing countries, where modern contraception is hard to obtain. Breastfeeding alone is not equal to the LAM method, and therefore, it is not enough to successfully protect against conception. That is why LAM promotion should primarily focus on conditions under which its use is safe and effective. More studies on larger study groups should be conducted to determine and confirm the impact of behavioral factors, like suckling parameters, on the LAM efficacy. Lactational bone loss is a physiologic mechanism that enables providing a sufficient amount of calcium to the newborn. Despite the decline in bone mass during breastfeeding, it rebuilds after weaning and is not associated with a postmenopausal decrease in BMD and osteoporosis risk. Therefore, it should be a matter of concern only for lactating women with additional risk factors or with low BMD before pregnancy. The review summarizes the effect that breastfeeding exerts on the hypothalamus-pituitary axis as well as fertility and bone turnover aspects of lactational amenorrhea. We discuss the possibility of the use of lactation as contraception, along with this method's prevalence, efficacy, and influencing factors. We also review the literature on the topic of lactational bone loss: its mechanism, severity, and persistence throughout life.


Asunto(s)
Amenorrea/metabolismo , Remodelación Ósea , Lactancia , Sistemas Neurosecretores/metabolismo , Anticoncepción/métodos , Femenino , Hormona Liberadora de Gonadotropina/metabolismo , Humanos , Hipotálamo/metabolismo , Kisspeptinas/metabolismo , Hormona Luteinizante/metabolismo , Prolactina/metabolismo , Regulación hacia Arriba
18.
Biol Trace Elem Res ; 200(12): 5205-5217, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-35094234

RESUMEN

This study investigated that the effect of nano-selenium (nano-Se) addition preventing prehierarchical follicular atresia induced by mercury (Hg) exposure in laying hens. Furthermore, endoplasmic reticulum (ER) stress pathway was explored to reveal the protective mechanism of nano-Se in vitro. The results revealed that Hg could significantly reduce laying performance (P < 0.05) and egg quality (P < 0.05), whereas nano-Se addition partially reversed the reductions. Besides, Hg significantly induced the deposition of Hg in prehierarchical follicles (P < 0.05) and prehierarchical follicular atresia (P < 0.05), whereas nano-Se addition could alleviate these toxicities in vitro. In addition, Hg exposure could significantly reduce cell viability (P < 0.05) and induce pyknotic nucleus in prehierarchical granulosa cells, while nano-Se addition reversed these effects. The levels of follicle-stimulating hormone (P < 0.05), luteinizing hormone (P < 0.05), progesterone (P < 0.05), and estradiol (P < 0.05) were significantly decreased after Hg exposure in vitro. However, nano-Se addition reversed the decreases of sex hormone levels. Furthermore, Hg exposure significantly increased the gene expressions of CHOP (P < 0.05), PERK (P < 0.05), ATF4 (P < 0.05), ATF6 (P < 0.05), ASK1 (P < 0.05), IRE1α (P < 0.05), TRAF2 (P < 0.05), caspase-9 (P < 0.05), caspase-3 (P < 0.05), and Bax/Bcl-2 (P < 0.05), whereas nano-Se addition reversed these increases of gene expressions in vitro. In summary, this study provides that Hg can induce prehierarchical follicular atresia, whereas nano-Se addition can ameliorate it, and elucidates an important role of ER stress in nano-Se alleviating prehierarchical follicular atresia induced by Hg in laying hens.


Asunto(s)
Mercurio , Selenio , Animales , Caspasa 3/metabolismo , Caspasa 9/metabolismo , Pollos/metabolismo , Estrés del Retículo Endoplásmico , Endorribonucleasas/metabolismo , Estradiol , Femenino , Hormona Folículo Estimulante/metabolismo , Atresia Folicular , Hormona Luteinizante/metabolismo , Mercurio/metabolismo , Progesterona/metabolismo , Proteínas Serina-Treonina Quinasas , Selenio/metabolismo , Selenio/farmacología , Factor 2 Asociado a Receptor de TNF/metabolismo , Proteína X Asociada a bcl-2/metabolismo
19.
J Neuroendocrinol ; 34(1): e13071, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34904297

RESUMEN

Neural circuits in female rats are exposed to sequential estradiol and progesterone to regulate the release of luteinizing hormone (LH) and ultimately ovulation. Estradiol induces progesterone receptors (PGRs) in anteroventral periventricular nucleus (AVPV) kisspeptin neurons, and as estradiol reaches peak concentrations, neuroprogesterone (neuroP) synthesis is induced in hypothalamic astrocytes. This local neuroP signals to PGRs expressed in kisspeptin neurons to trigger the LH surge. We tested the hypothesis that neuroP-PGR signaling through Src family kinase (Src) underlies the LH surge. As observed in vitro, PGR and Src are co-expressed in AVPV neurons. Estradiol treatment increased the number of PGR immunopositive cells and PGR and Src colocalization. Furthermore, estradiol treatment increased the number of AVPV cells that had extranuclear PGR and Src in close proximity (< 40 nm). Infusion of the Src inhibitor (PP2) into the AVPV region of ovariectomized/adrenalectomized (ovx/adx) rats attenuated the LH surge in trunk blood collected 53 h post-estradiol (50 µg) injection that induced neuroP synthesis. Although PP2 reduced the LH surge in estradiol benzoate treated ovx/adx rats, activation of either AVPV PGR or Src in 2 µg estradiol-primed animals significantly elevated LH concentrations compared to dimethyl sulfoxide infused rats. Finally, antagonism of either AVPV PGR or Src blocked the ability of PGR or Src activation to induce an LH surge in estradiol-primed ovx/adx rats. These results indicate that neuroP, which triggers the LH surge, signals through an extranuclear PGR-Src signaling pathway.


Asunto(s)
Hormona Luteinizante/metabolismo , Neuronas/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/fisiología , Familia-src Quinasas/fisiología , Animales , Femenino , Hipotálamo/metabolismo , Ovulación/sangre , Ovulación/metabolismo , Ratas , Ratas Long-Evans , Receptores de Progesterona/metabolismo , Transducción de Señal/fisiología , Familia-src Quinasas/metabolismo
20.
Endocrinology ; 163(2)2022 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-34967900

RESUMEN

For billions of years before electric light was invented, life on Earth evolved under the pattern of light during the day and darkness during the night. Through evolution, nearly all organisms internalized the temporal rhythm of Earth's 24-hour rotation and evolved self-sustaining biological clocks with a ~24-hour rhythm. These internal rhythms are called circadian rhythms, and the molecular constituents that generate them are called molecular circadian clocks. Alignment of molecular clocks with the environmental light-dark rhythms optimizes physiology and behavior. This phenomenon is particularly true for reproductive function, in which seasonal breeders use day length information to time yearly changes in fertility. However, it is becoming increasingly clear that light-induced disruption of circadian rhythms can negatively impact fertility in nonseasonal breeders as well. In particular, the luteinizing hormone surge promoting ovulation is sensitive to circadian disruption. In this review, we will summarize our current understanding of the neuronal networks that underlie circadian rhythms and the luteinizing hormone surge.


Asunto(s)
Ritmo Circadiano/fisiología , Hormona Luteinizante/metabolismo , Red Nerviosa/fisiología , Neuronas/fisiología , Animales , Relojes Circadianos , Ritmo Circadiano/genética , Péptidos y Proteínas de Señalización del Ritmo Circadiano , Femenino , Hormona Liberadora de Gonadotropina , Hipotálamo , Kisspeptinas , Luz , Masculino , Neuropéptidos/fisiología , Roedores , Núcleo Supraquiasmático/fisiología , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA